
Eur. Phys. J. B 52, 83–90 (2006)
DOI: 10.1140/epjb/e2006-00266-x THE EUROPEAN

PHYSICAL JOURNAL B

Driven lattice gas with nearest-neighbor exclusion:
shear-like drive

F.Q. Potiguara and R. Dickmanb

Departamento de F́ısica, ICEx, Universidade Federal de Minas Gerais, 30123-970, Belo Horizonte, Minas Gerais, Brazil

Received 3 October 2005 / Received in final form 27 March 2006
Published online 6 July 2006 – c© EDP Sciences, Società Italiana di Fisica, Springer-Verlag 2006

Abstract. We study the lattice gas with nearest-neighbor exclusion on the square lattice and Kawasaki
(hopping) dynamics, under the influence of a nonuniform drive, via Monte Carlo simulation. The drive,
which favors motion along the +x direction and inhibits motion in the opposite direction, varies linearly
with y. (The boundaries along the drive direction are periodic, so that the system is not described by an
equilibrium Gibbs distribution.) As in the uniformly driven case [R. Dickman, Phys. Rev. E 64, 16124
(2001)], the onset of sublattice ordering occurs at a lower density than in equilibrium, but here an un-
expected feature appears: particles migrate out of the high-drive region. For intermediate system sizes
(L � 100), the accumulation of particles is sufficient for the low-drive region to become ordered at a
global density of about 0.3. Above this density we observe a surprising reversal in the density profile, with
particles accumulating to the high-drive region, due to jamming. For larger systems (L ≥ 200) particles
quickly jam in the high-drive region, as occurs under uniform drive, and the accumulation of particles in
the low-field region is severely reduced.

PACS. 05.10.Ln Monte Carlo methods – 05.70.Ln Nonequilibrium and irreversible thermodynamics –
64.60.Ht Dynamic critical phenomena

1 Introduction

The lattice gas is a basic model system of interacting par-
ticles with excluded volume, and has been used extensively
to study equilibrium properties of simple fluids. Nonequi-
librium versions have also been widely studied [1,2], gen-
erally via the imposition of a “drive” that biases hopping
along one of the principal axes of the lattice [3]. Lattice
gases with biased hopping are also known as driven diffu-
sive systems (DDS) [1]; the repulsive version [4,5] serves
as a model for fast ionic conductors [6]. The stationary
properties of driven, nonequilibrium lattice gases depend
strongly on the kind of dynamics and on the manner
in which the bias is implemented, unlike in equilibrium,
where the energy function and boundary conditions are
the sole determining factors. The phase diagram and crit-
ical behavior of DDS has attracted much interest in recent
years [1,2].

The lattice gas with nearest-neighbor exclusion (NNE)
is the infinite-repulsion limit of the lattice gas with
nearest-neighbor repulsion. In this limit particles are for-
bidden to occupy the same or neighboring sites; the min-
imum allowed interparticle separation is that of second
neighbors. Hard-core exclusion is the only interaction be-
tween the particles, so the model is a minimal lattice
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version of the hard-sphere fluid. (This model also repre-
sents the zero-neighbor limit of the Biroli-Mézard lattice
glass model [7].) The equilibrium version was studied
in [8–13] both theoretically and numerically, for various
lattice types. These analyses show that the model exhibits
a continuous phase transition to an ordered state at a
critical density ρc (≈0.367 on the square lattice), with ex-
ponents that belong to the Ising universality class [13].
This order-disorder transition occurs in bipartite lattices,
i.e., those that may be decomposed into two sublattices,
A and B, such that the nearest-neighbors of any sites in
sublattice A belong to sublattice B and vice-versa. The
equilibrium version also models hard core bosons [14].

More recently, driven versions of the NNE model were
studied [15,16]. In reference [15] it was found, for the
case of nearest-neighbor hopping dynamics on the square
lattice, that the critical density decreases with increas-
ing bias. The transition is continuous for weak bias but
becomes discontinuous under sufficiently strong drive. In
the latter case, above the transition density, the system
separates into regions of low and high local density, with
the high-density region essentially frozen or jammed; sub-
lattice ordering is observed only in the jammed region.
Szolnoki and Szabó [16] extended the dynamics to include
next-nearest-neighbor (diagonal) hopping, and observed a
similar variation of the critical density with drive strength,
but with a uniform particle distribution. Continuous phase
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transitions in this version of the model fall in the Ising
class, as in equilibrium [16]. These results suggest that
there are two ordering scenarios in the driven NNE lattice
gas: one (continuous) that depends on unequal sublattice
occupancies to accomodade high particle densities, as in
equilibrium, and a second in which a discontinuous tran-
sition is provoked by the formation of a jammed region.

As part of the ongoing effort to characterize the phases
of driven systems [1,2], and motivated by the surprising re-
distribution of particles observed in the NNE model under
uniform drive, we study here the effects of a nonuniform
drive. We present results of Monte Carlo (MC) simulations
of a NNE lattice gas in which the drive varies linearly with
position, imitating the velocity profile of a sheared fluid.
Our main objective is to obtain the phase diagram of the
model. We determine the critical density and study the
behavior of the order parameter and the stationary cur-
rent as functions of density in systems of L×L sites, with
L ranging from 20 to 500. This type of driving field was
used in a study of cluster aggregation in a simple lattice
model without nearest-neighbor exclusion [17].

Of particular interest is how the particles are dis-
tributed under the nonuniform drive, as reflected in the
density, current and order parameter profiles. We find
that at intermediate sizes (L ≈ 100), at global densities
lower than about 0.33, particles tend to accumulate in the
low-drive region. Surprisingly, this tendency is sufficiently
strong for the density in this region to exceed the transi-
tion density of the equilibrium system. Thus, as the global
density is increased, ordering first occurs in the low-drive
region. This is quite different from the uniform-drive case,
in which a large bias facilitates ordering. Moreover, this
represents a new mechanism for the phase transition in
the driven NNE model, as the ordering is not accompa-
nied by jamming. As the global density is increased be-
yond 0.30, the tendency for particles to accumulate in the
low-drive region is gradually reversed. The high-drive re-
gion becomes denser, leading to the jamming phenomenon
observed in reference [15]. For system sizes L ≥ 200, the
accumulation of particles in the low drive is weaker than
in smaller lattices. This is because the high-drive region
jams at a lower global density, closer to the value found
under uniform drive.

Numerical studies of phase transitions normally probe
the large-system limit, by applying finite-size scaling
(FSS) analysis to results for various system sizes. In the
present case such an analysis is hindered by the fact that,
if we maintain one side of the system at zero drive, and
the other at maximum, then the gradient (∝1/L) weakens
with increasing system size, and for large L the behavior
may approach that of a uniformly driven system. If, on the
other hand, one fixes the magnitude of the drive gradient
at 1/Lmax, one may study various system sizes (≤Lmax)
at fixed gradient. But now one has various choices for the
range of drive values, in systems with L < Lmax. In sum-
mary, there is no way to study a sequence of “equivalent”
systems of different size as required for FSS analysis. We
do consider two examples of systems with different sizes
but the same field gradient, and show how the order pa-

rameter and current change with different maximum and
minimum fields.

The balance of this paper is organized as follows. We
detail the model and simulation procedure in Section 2. In
Section 3 present numerical results and analysis, and dis-
cuss the mechanism behind the nonuniform density profile.
We summarize our results in Section 4.

2 Simulations

We study a system of N particles on a square lattice of
L×L sites. The NNE condition implies that if site (i, j) is
occupied, the four neighboring sites, (i±1, j) and (i, j±1),
must be vacant. Naturally, two particles may not occupy
the same site. Thus the particle density ρ = N/L2 ≤ 1/2.
The dynamics is via local hopping. At each attempted
move, a particle is selected at random and assigned a
new (trial) position at one of the nearest neighbor sites,
with probabilities as discussed below. If the trial posi-
tion does not violate the exclusion constraint, the move
is accepted, otherwise it is rejected. The initial configura-
tion is prepared via random sequential adsorption (RSA)
[18,19] of particles, always respecting the excluded-volume
condition. Once all N particles have been inserted, the
hopping dynamics begins. We define a time unit as N
attempted moves, and generally follow the evolution for
106 time units.

The drive is imposed by biasing the probabilities for
hopping along the x-direction; the system has periodic
boundaries in this direction. In the direction perpendicular
to the drive we impose reflecting boundaries: moves to y =
0 or y = L+1 are prohibited. The bias is defined in terms
of the probability Pr for a particle to attempt a jump
to the right (x → x + 1); the probability for attempting
to hop to the left is Pl(y) = 1/2 − Pr(y), and 1/4 in
the +y and −y directions. Thus Pr = 1/4 in equilibrium
(zero bias) while Pr = 1/2 corresponds to maximum bias
(hopping in the −x-direction prohibited). We study linear
bias profiles, with Pr(y) varying from a certain minimum
pmin ≥ 1/4 at y = 1, to a maximum, pmax ≤ 1/2, at
y = L. The drive gradient magnitude is defined as κ ≡
4(pmax − pmin)/(L − 1). The simplest case is:

Pr(y) =
1
4

(
1 +

y − 1
L − 1

)
, (1)

i.e., no bias at y = 1, maximum bias at y = L, and gradi-
ent κ = 1/(L − 1).

3 Results

3.1 Stationary global properties

To begin, we consider the drive profile of equation (1).
We treat the global particle density ρ as the control pa-
rameter, in systems of size L = 20, 50, 100, 200 and 500.
To obtain a preliminary notion of the phase diagram, we
study the order parameter and the stationary current. The
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Fig. 1. Order parameter vs. global density.

order parameter is defined as the difference in sublattice
occupancies per site,

〈φ〉 =
〈|NA − NB|〉

L2
, (2)

where NA (NB) is the number of particles in sublattice
A(B) and 〈 〉 indicates a stationary time average, as well
as an average over independent realizations (we use the
same notation for all other quantities). Note that complete
ordering corresponds to 〈φ〉 = ρ. We performed 100, 50
and 25 independent realizations for L = 20, 50, L = 100
and L = 200, respectively.

Figure 1 shows the global order parameter (i.e., aver-
aged over the entire system) as a function of global den-
sity ρ, in the stationary state. The rapid rise in the order
parameter suggests that the system undergoes a phase
transition near ρ = 0.29. The transition appears to be
continuous, motivating the study of the scaled variance of
the order parameter, χ = L2〈(∆φ)2〉, where ∆φ = φ−〈φ〉,
(Fig. 2). (In equilibrium, χ represents the staggered sus-
ceptibility per site, and diverges at ρc in the infinite-size
limit. The results for L = 200 represent averages over
50 independent realizations in this case.)

The maximum in χ grows with system size, suggesting
that it diverges as L → ∞, as expected for a continuous
phase transition. We estimate the transition density as
ρc = 0.297(1). The critical density is clearly lower than in
equilibrium, ρc ≈ 0.367 [9,13].

In the uniformly driven system [15], the transition (for
maximum bias and L = 100) occurs at a density of 0.272,
and is discontinuous. It is interesting to note that in the
uniform case, a transition density of ρc = 0.30 is obtained
for Pr = 3/8; under these conditions the transition is dis-
continuous. The transition in the uniformly driven system
is continuous for Pr ≤ 0.3. In fact, the value of the drive in
the ordered region of the system studied here satisfies this
inequality. Of note in Figure 2 is the anomalously small
value for L = 20. This is due to the fact that for this small
system size, most realizations become frozen on the time
scale of the simulations, as is also reflected in the current
(Fig. 3).

The current density is defined as the difference between
the number of jumps along the drive and the number con-
trary to it, per site and unit time. This quantity (Fig. 3)

Fig. 2. Scaled variance of the order parameter vs. global den-
sity.

Fig. 3. Stationary current density versus global density.

displays a similar behavior as in the uniformly driven case:
it increases at small densities (reflecting the increasing
number of carriers) and decreases for larger densities (due
to the reduction in available space for movement). The
maximum value of 〈j(t)〉 falls at roughly in the same den-
sity as in the uniform drive case [15]. For L = 100 we ob-
serve a plateau in 〈j〉 (see inset of Fig. 3). Following the
plateau the current decreases precipitously. The plateau
is not seen for L = 50 or L = 200. (In the latter case the
current decreases rapidly in the critical region.) In Sec-
tion 3.2 below we will give a qualitative explanation of
these results based on the density and current profiles.

The order parameter and the stationary current ex-
hibit strong fluctuations at densities above ρ = 0.32.
The evolution of these quantities typically displays sudden
jumps between the ordered and the disordered state, a fact
already observed in the uniformly driven case [15]. The
drive provokes formation of organized structures while
thermal motion provides a mechanism for their break-up.
The strong fluctuations, and slow relaxation, render it dif-
ficult to obtain precise results for the order parameter and
current in this regime. Typically, to obtain reliable results,
we have to increase the simulation time by a factor of 10.
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Fig. 4. Order parameter profiles for global density of 0.30.

Fig. 5. Density profiles for a global density value of 0.30.

3.2 Profiles

To better understand how the system organizes, we an-
alyze the order parameter, density and current profiles,
〈φ(y)〉, 〈ρ(y)〉 and 〈j(y)〉, respectively. They are defined
exactly as their global counterparts, except that they are
normalized by the number of sites in a line, L, instead of
the total number of sites. These quantities are shown in
Figures 4–6 for a global density of 0.30.

These density profiles show that for L ≤ 100, particles
are expelled from the high-drive region. (The case of L =
20, as noted above, is anomalous). For larger system sizes
the picture is quite different: the expulsion of particles
is no longer evident at density ρ = 0.30, although it does
occur at slightly smaller densities. We instead observe (for
ρ = 0.30), a marked accumulation in a region closer to
that of maximum drive. In both cases, the high-density
region is more ordered than the rest of the system as seen
in Figure 4. For L ≥ 200, the accumulation of particles in
the low drive region is less pronounced than for L < 200,
and is not associated with a transition to an ordered phase.

Fig. 6. Current profiles for ρ = 0.30. For L = 20 the current
is extremely small.

Fig. 7. Order parameter profile for global densities as indi-
cated, L = 100.

Particle accumulation appears to be the mechanism
behind the phase transition (see Fig. 2) and the change
in the variation of the current with density. From the or-
der parameter profiles, it is evident that ordering is re-
stricted to the regions with higher density. As we increase
the global density, particles accumulate in specific regions,
and the global order parameter increases continuously.

The current profiles indicate that the current is pre-
dominantly in the high-drive region. Since for L =
100 most of the particles accumulate in the low-drive re-
gion, the overall value of the stationary current is barely
affected by a change in the global density close to the
critical point, leading to the observed plateau in Figure 3.
The situation is different for L ≥ 200 because most of the
particles jam in the high-drive region, leading to a sharp
drop in the global current just above the transition.

We show the profiles for L = 100 at higher global den-
sities (up to ρ = 0.34), in Figures 7–9. Enhanced particle
concentration in the low-drive region is in fact observed
for densities as low as ρ = 0.20, for this system size. For
global density ρ 
 0.32, the density profile ρ(y) (Fig. 8)
is highly skewed to the region around y = 0, where the
bias is small. Note that the local density is ≥0.37 in this
region (for ρ between 0.30 and 0.32), that is, greater than
or equal to ρc in equilibrium. The density profile decays
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Fig. 8. Density profile for a global densities as indicated,
L = 100.

Fig. 9. Current profile for global densities as indicated,
L = 100.

monotonically with increasing y (except for small density
oscillations induced by the wall at y = 0).

For higher global densities the tendency reverses. At
a global density of ρ = 0.33, the local density increases
with y, reaching a peak near y = 47, after which it decays
in an approximately linear fashion. For a certain range
of global densities, the local density near y = 1 actually
decreases with increasing ρ. Turning to the current profiles
(Fig. 9), we see that as the global density is increased,
the current rapidly decreases (as is already evident from
Fig. 3), and progressively shifts to the low-drive region.
Results for ρ > 0.35 (not shown here) indicate that the
current in the high-drive region is essentially zero for this
range of densities.

3.3 Ordering and jamming

The surprising reversal of the density and current profiles
with increasing global density is related to the formation
of a jammed region, as observed in the uniformly driven
system [15]. A jammed region is one in which all move-
ment is blocked (except for motions of particles trapped
in cages); the diffusion constant and mobility are zero in

Fig. 10. Particle configuration at density ρ = 0.31, after
106 MC steps (system size L = 100). Open and filled sym-
bols represent particles in different sublattices. The drive is
directed to the right and increases in the vertical direction.

such regions. When the global density is too low for a
jammed region to form, particles tend to collect in the
low-drive region because a strong drive tends to destroy
the local correlations needed for particles to pack to high
density. When, on the other hand, the global density is
sufficiently high for a jammed region to form, it appears
in the high-drive region, leading to an irreversible accu-
mulation of particles there, so that the low-drive region
has fewer particles than at lower global densities.

To illustrate these ideas, we show in Figure 10 a con-
figuration for ρ = 0.31 and L = 100 (all the results in
this subsection are for this system size). As expected, the
low-drive region is very dense and contains few mobile
particles. In the uniformly driven system (at maximum
bias) one observes, at this density, formation of a “herring-
bone” pattern of diagonal stripes, pointing along the drive,
with particles in this structure essentially frozen (this is
closer to the form of the jammed region for L ≥ 200).
In the present case the low-drive region is highly ordered,
with almost all particles in the same sublattice, but there
is no sign of the herringbone pattern. The high-drive re-
gion is disordered, permitting the high currents and lower
densities reported above. Several clusters are seen in the
high-drive region, but they are not large enough to cause
jamming.

For global densities above about 0.34, the situation,
as noted, is completely changed. Particles now accumu-
late in the high-drive region, and the density profile ex-
hibits a maximum in the central region (intermediate drive
strength). At these higher densities the current profile dis-
plays a peak in the low-drive region. The peak shifts to
smaller y (smaller bias) and decreases in amplitude as the
global density is increased.

Figure 11 shows a typical configuration at global den-
sity ρ = 0.35. Evidently the long diagonal line of particles
at the upper right is associated with jamming in the high-
drive region. The empty triangular region implies a de-
crease in the local density with increasing y. Particles are
not free to enter this region since all particles along the
diagonal edge are jammed. These observations are sup-
ported by the density and current profiles (Figs. 5 and 6).
The density is roughly constant in the middle portion of
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Fig. 11. Particle configuration at density ρ = 0.35, after 106

time units (L = 100).

Fig. 12. Radial distribution function for the high- and low-
drive regions, for densities ρ = 0.31 and ρ = 0.35. The error
bars are the same size or smaller than the symbols.

the lattice and begins to decrease near y = 78, where the
empty triangular region begins. The current is only ap-
preciably different from zero in the lower portion of the
lattice, as signalled in Figure 11 by the presence of par-
ticles in both sublattices. The diagonal edges observed in
configurations at this density (always in the high-drive re-
gion), are extremely long-lived structures, since only the
particle at the tip of the line can move without violating
the exclusion constraint. Even these particles are able to
move only rarely, so that this structure does not change
on the time scale of the simulation.

To study interparticle correlations, we determine the
radial distribution function, g(r) in the high- and low-
drive regions (Fig. 12). This function is proportional to
the probability of finding a pair of particles separated by
a distance r, and is normalized so that g → 1 as r → ∞.
For purposes of determining g(r), the low-drive region is
taken as the strip 6 ≤ y ≤ 14, while the high-drive region
comprises 86 ≤ y ≤ 94.

The g(r) curves for global density ρ = 0.31 show that
the high- and low-drive structures are markedly different.
In the low-bias region the peaks are much larger due to
sublattice ordering associated with packing of particles,
and are compatible with long-range order (LRO). The
high-drive region shows little structure; the oscillations
in g(r) decay rapidly with distance. Again, the picture for
ρ = 0.35 is quite different. The sharpness of the peaks

Fig. 13. Pair correlation function (unnormalized) along the
drive direction for the high- and low-drive regions, for densities
ρ = 0.31 and ρ = 0.35. The error bars are the same size or
smaller than the symbols.

in g(r) in the high-bias region, for ρ = 0.35, reflects the
very different sublattice densities, as does the fact that
g 
 0 for r = 3,

√
13 and

√
17. The radial distribution

function in the low-drive region, for this density, exhibits
less structure, consistent with the more equal sublattice
occupancies.

In Figure 13 we show the joint probability (unnormal-
ized) for a pair of sites, separated by a distance x along the
drive direction, to be simultaneously occupied. (Here, low-
and high-drive regions are those for y ≤ 50 and y > 50,
respectively.) This figure makes clear the existence of LRO
in the low-drive region at global density 0.31, and the com-
plete absence of such order in the high-drive region. For
a global density of 0.35, LRO is evident in the high-drive
region due to the formation of jammed structures, as de-
scribed above. It is unclear whether LRO persists in the
low-drive region.

Figure 14 shows the joint probability (again unnor-
malized) for simultaneous occupation of a pair of sites
separated by a distance y, perpendicular to the drive.
We measured this quantity in two sections of the lattice:
12 < y ≤ 38 and 62 < y ≤ 88, corresponding to low
and high drive. For global density 0.31 correlations along
y have practically the same structure as those along x,
although the amplitude of g(y) is slightly smaller than
g(x). For ρ = 0.35, the high-bias region possesses a nearly
isotropic LRO. At this density the low-bias region exhibits
anisotropic correlations, with g(x) decaying more rapidly
than g(y).

3.4 Results for fixed drive gradient
and varying system size

In this subsection we consider the results for the global or-
der parameter and stationary current for different system
sizes but with the same drive gradient κ. We first consider
a gradient of κ ≈ 0.01, for L = 100 and L = 50. In the
latter case, the bias varies between zero and half its maxi-
mum value (case 50−I ), from half-maximum to maximum
(case 50− II ), and from a quarter to three-quarters of the
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Fig. 14. Pair correlation function (unnormalized) perpendic-
ular to the drive direction measured in regions of low and high
bias, for densities ρ = 0.31 and ρ = 0.35. The error bars are
the same size or smaller than the symbols.

Fig. 15. Order parameter for L = 100 and the three L =
50 systems with the same drive gradient, κ ≈ 0.01.

maximum (case 50 − III ). Figures 15 and 16 show both
results.

In case 50 − II the variation of the order parameter
suggests a discontinuous transition around ρ = 0.282(2).
Correspondingly, the stationary current drops sharply at
this density. For cases 50 − I and 50 − III , the variation
of the order parameter and current with global density
is much smoother, with no sign of discontinuities, even
though the derivative ∂〈φ〉/∂ρ is clearly larger for 50−III
than for 50 − I. It is interesting to note that the critical
densities in the three smaller lattices are different; the
smallest value is for 50 − II. The next largest is for case
50 − III , which is very close to the critical density of the
L = 100 case, while the largest critical density is found in
case 50 − I.

For a bias gradient of κ ≈ 0.005, we studied system
sizes L = 200 and L = 100. There are now two cases for
L = 100, analogous to cases 50 − I and 50 − II , termed
100 − I and 100 − II . Figures 17 and 18 show the re-
sults for the order parameter and the stationary current,
respectively.

These two plots strengthen the conclusions drawn ear-
lier: for 100−II the order parameter curve has the features
of a discontinuous transition, around ρ = 0.2755, while the
results for 100 − I shows a clearly continuous transition.
Again, the critical densities of the smaller systems are dif-

Fig. 16. Current density for the same cases as in Figure 15.

Fig. 17. Order parameter for L = 200 and the two L =
100 cases, all with the same drive gradient, κ ≈ 0.005.

Fig. 18. Current density for the same states as those in Fig-
ure 17.

ferent and have the same pattern as those for the cases
before: ρc(100 − I ) < ρc(100 − II ).

A glance at the average probability P r =
1
L

∑L
y=1 Pr(y), for a jump in the +x direction helps to

understand the above results for the critical densities and
the nature of the transitions. Its value for the drive profile
of equation (1) is 0.375. In cases I, II and III the val-
ues are 0.3125, 0.4375 and 0.375, respectively, regardless
of the system size L. Since the critical density decreases
with bias, we should expect the critical densities in cases I,
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II and III to be lower, higher and equal to the full gradient
case.

For large systems in which the bias profile varies from
zero to maximum, both tendencies, accumulation of par-
ticles in the low-drive region, and jamming in that of high
drive, are present. For example, a system with L = 500
exhibits, at a global density of 0.25, enhanced concentra-
tion of particles in both high- and low-bias regions. The
result of the complementary tendencies is a continuous
transition, as can be inferred from Figure 1.

4 Conclusions

We study a lattice gas with nearest-neighbor exclusion
driven by a nonuniform, shear-like drive, on the square lat-
tice, under nearest-neighbor hopping dynamics. The prob-
lem is of interest both as an example of the surprising
behavior to be found in a simple nonequilibrium system,
and as a toy model for a granular or colloidal system un-
der shear. We find that the system with a drive profile
of equation (1) (no bias at one wall, maximum at the
other) undergoes a continuous order-disorder transition
at a critical density of about ρc = 0.297(1). This is un-
like the uniformly driven model, in which the transition is
discontinuous for a bias ≥0.75. Despite the fact that, in
this series of studies, the drive gradient decreases as we
increase system size, we see no evidence of a change to a
discontinuous transition for large L. In particular, the data
for the variance of the order parameter, 〈(∆φ)2〉, (Fig. 2)
suggest the transition remains continuous as L → ∞.

Our results show that in this case order-disorder transi-
tion is due to the concentration of particles in definite por-
tions of the lattice. For L ≤ 100, the phenomenon occurs
at low-bias region, for global densities between ρ = 0.28
and 0.32. Remarkably, the nonuniform drive induces a
highly nonuniform density profile, expelling particles from
the high-bias region. The effect is sufficiently strong to in-
duce sublattice ordering in the low-bias region. Thus the
drive favors a class of configurations that, on the basis
of entropy maximization, would be extremely unlikely in
equilibrium. Note that at these densities there is no jam-
ming, i.e., the system is ergodic. Migration of particles to
the low-bias region appears to derive from the destruction
of short-range correlations, required for efficient packing,
by the drive. For higher densities, we observe a completely
inverted picture, with formation of jammed structures in
the high-drive region, while particles outside this region
remain mobile. The jammed region is characterized by a
dense (ρ ≥ 0.37) strip of particles; at higher global densi-
ties this region displays long diagonal chains of particles
associated with voids. Preliminary studies show that the
concentration effects also appear if half the system has no
bias while the remainder is subject to maximum bias [20].

The situation for larger lattices (L ≥ 200) is different.
The accumulation occurs simultaneously in two regions,
in the vicinity of the walls. This reflects the fact that for
increasing system size, the field gradient, κ ≈ 1/L, lead-
ing to a behaviour similar to that of the uniformly driven
system, in different parts of the lattice. In the high-bias re-
gion, the field quickly induces particle aggregation, while

particles slowly accumulate in the low-bias region as well.
We expect that the infinite size limit, the transition is con-
tinuous, with ordering occuring first near the walls, and
spreading to the rest of the lattice with increasing global
density.

It is natural to ask how the system studied here may
be studied theoretically. At the microscopic level, solution
of the full master equation seems impossible, but vari-
ous truncations or cluster mean-field theories have been
devised for driven systems [1,2]. In models with nearest-
neighbor exclusion, however, one must use rather large
clusters (consisting of six or more sites), to observe any
effect of the drive, as shown by Szolnoky and Szabó [16].
A possible approach would be a spatially inhomogeneous
version of the six-site approximation, involving 17 vari-
ables at each position, along the direction perpendicular to
the drive. Another possibility is a coarse-grained descrip-
tion in terms of the particle and order-parameter densities,
along the lines of a time-dependent Ginzburg-Landau the-
ory. To construct such a theory one would need to develop
plausible expressions for the dependence of the parameters
(such as the excluded volume interaction, for example) on
the drive. We defer investigation of these approaches to
future work.
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